Severe perinatal thrombosis in double and triple heterozygous offspring of a family segregating two independent protein S mutations and a protein C mutation.
نویسندگان
چکیده
Molecular genetic and phenotypic analyses were performed in a highly unusual case of combined protein S and protein C deficiency manifesting in a family in which a child had died perinatally from renal vein thrombosis. Antenatal diagnosis in a second pregnancy was initially performed by indirect restriction fragment length polymorphism (RFLP) tracking using a neutral dimorphism within the PROS gene and served to exclude severe protein S deficiency. Am umbilical vein blood sample at 22 weeks gestation showed isolated protein C deficiency. This pregnancy proceeded to a full-term delivery without thrombotic complications. Molecular genetic analysis of the PROC and PROS gene segregating in the family then yielded one PROC gene lesion in the father and two PROS gene lesions, one in each parent. These lesions were shown to segregate with the respective deficiency states through the family pedigree. Analysis of DNA from paraffin-embedded liver tissue taken from the deceased child showed the presence of both PROS mutations, as well as the PROC mutation. Genotypic analysis of the second child showed a PROC mutation, but neither PROS mutation consistent with its possession of normal protein S levels and a low/borderline protein C level. Antenatal diagnosis was then performed in a third pregnancy by direct mutation detection. However, although the fetus carried only the paternal PROS and PROC gene lesions, the child developed renal thrombosis in utero. It may be that a further genetic lesion at a third locus still remains to be defined. Alternatively, the intrauterine development of thrombosis in this infant could have been caused, at least in part by a transplacental thrombotic stimulus arising in the protein S-deficient maternal circulation. This analysis may, therefore, serve as a warning against extrapolating too readily from genotype to phenotype in families with a complex thrombotic disorder.
منابع مشابه
Novel CFTR Mutations in Two Iranian Families with Severe Cystic Fibrosis
Background: Cystic fibrosis (CF) is a common autosomal recessive disorder that affects many body systems and is produced by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CF is also the most frequently inherited disorder in the West. The aim of this study was to detect the mutations in the CFTR gene in two Iranian families with CF. Methods: After DNA extractio...
متن کاملFamily screening for a novel ATP7B gene mutation, c.2335T>G, in the South of Iran
Background Wilson disease (WD) is a rare autosomal recessive disorder, which leads to copper metabolism, due to mutations in ATP7B gene. The gene responsible for WD consists of 21 exons that span a genomic region of about 80 kb and encodes a copper transporting P-type ATPase (ATP7B), a protein consisting of 1465 amino acids. Identifying mutation in ATP7B gene is important to find carrier i...
متن کاملFactor V Leiden, MTHFR C677T and Prothrombin Gene Mutation G20210A in Iranian Patients with Venous Thrombosis
Background: Factor V Leiden, Prothrombin gene (G20210A) and MTHFR (C677T) polymorphism are the main biomarkers for evaluation of tendency for venous thromboembolism. We aimed to investigate the frequency of mutations in factor V Leiden, Prothrombin G20210A and MTHFR C677T and identify the genetic status for these mutations in patients with venous thrombosis. Methods: This study was carried out...
متن کاملA Novel Missense Mutation in CLCN1 Gene in a Family with Autosomal Recessive Congenital Myotonia
Congenital recessive myotonia is a rare genetic disorder caused by mutations in CLCN1, which codes for the main skeletal muscle chloride channel ClC-1. More than 120 mutations have been found in this gene. The main feature of this disorder is muscle membrane hyperexcitability. Here, we report a 59-year male patient suffering from congenital myotonia. He had transient generalized myotonia, which...
متن کاملGenotyping of Intron 22 and Intron 1 Inversions of Factor VIII Gene Using an Inverse-Shifting PCR Method in an Iranian Family with Severe Haemophilia A
Abstract Background: Haemophilia A (HA) is an X-linked bleeding disorder caused by the absence or reduced activity of coagulation factor VIII (FVIII). Coagulation factors are a group of related proteins that are essential for the formation of blood clots. The aim of this study was to genotype the coagulation factor VIII gene mutations using Inverse Shifting PCR (IS-PCR) in an Iranian family ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 87 9 شماره
صفحات -
تاریخ انتشار 1996